JSET2019008

Keywords

Phytoextraction
Weeds
Heavy metal contamination
Soil remediation

How to Cite

Borines, M. L. ., Calibo, C., Loreto, M. T., & Tulin, E. (2019). Potentials of Aquatic Weeds (Ipomoea aquatica, Sphenoclea zeylanica, Pistia stratiotes) for Cadmium Phytoremediation. Journal of Science, Engineering and Technology (JSET), 7, 68-76. Retrieved from https://www.ijterm.org/index.php/jset/article/view/9

Abstract

Cadmium (Cd), a toxic heavy metal is a common contaminant in rice paddy soil. Phytoremediation is seen as one of the cheaper methods of removing heavy metals from contaminated soil. This research was designed to test the efficacy of three weed species (Ipomoea aquatica L, Sphenoclea zeylanica Schmidt and Pistia stratiotes L.) associated with low-land rice (Oryza sativa L.) to extract Cd from a rice paddy soil near two industrial establishments in a rural area in the Philippines. Levels of initial and final Cadmium content of the soil were analyzed. Soil pH, and moisture, as well as the Cd content of the plants were also compared after harvest. The tested weed species significantly reduced the soil Cd level compared to rice and the negative control, suggesting the potential of these weeds in extracting Cd from the soil. Among the three weeds, Pistia stratiotes had the highest total cadmium concentration level followed by Ipomeoa aquatica, and Sphenoclea zeylanica, while rice had the lowest concentration. These weeds then can be used for the phytoremediation of Cd-contaminated soil.

JSET2019008

References

Adriano, D.C. (2001). Trace elements in terrestrialenvironments: biogeochemistry, bioavailability and risks of metals (2nd ed). NewYork: Springer

Agunbiade, F.O., Olu-Owolabi, B.I., & Adebowale, K.O. (2009). Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water. Bioresource Technology, 100, 4521-4526. https://doi.org/10.1016/j. biortech.2009.04.011

Baysa, M.C., Anuncio R.R.S., Chiombon, M.L.G, Dela Cruz, J.P.R., & Ramelb, J.R.O. (2006). Lead and cadmium contents in Ipomoea aquatic Forsk grown in Laguna de Bay. Philippine Journal of Science,135(2),139-143.

Blejer, H.P., Caplan, P.E., & Alcocer A.E. (1966). Acute cadmium fume poisoning in welders - A fatal and a nonfatal case in California. California Medicine,105, 290-296.

Carbisu, C., Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metalsfromtheenvironment. Bioresource Technology,77,229-236.

Das, S., Goswami, S., & Das Talukdar, A. (2013). A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bulletin of Environmental Contamination and Toxicology, 92. doi:10.1007/s00128-013-1152-y.

Eddy, N.O., & Ekop, A.S. (2007). Phytoremediation potentials of some nigerian weeds. Asian Journal of Chemistry,19(3),1825-1831.

Godt J., Scheidig F., Grosse-Siestrup C., Esche V., Brandenburg P., Reich A. & Groneberg D.A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1(22). doi: 10.1186/1745-6673-1-22.

Gowri J., Pragathiswaran C., & Arockia Sahayaraj, P. (2016). Physicochemical and heavy metal analysis of the leaf, stem, and flower extracts of Sphenoclea Zeylanica. Innovare Journal of Sciences, 5(1),28-31.

Hammami, H., Parsa, M., Mohassel, M.H.R, & Mijani, S. (2016). Weeds ability to phytoremediate cadmium-contaminated soil. International Journal of Phytoremediation,18(1),48-53.

Henry, J.R.(2000). An overview of the phytoremediation of lead and mercury. Office of Solid Waste and Emergency Response. Washington: U.S. Environmental Protection Agency.

Honda, R., Swaddiwudhipong, W., Nishijo, M., Mahasakpan, P., Teeyakasem, W., Ruangyuttikarn, W., Satarug, S., Padungtod, C., & Nakagawa, H. (2010). Cadmium induced renal dysfunction among residents of rice farming area downs tream from azinc-mineralized belt in Thailand. Toxicology Letters, 198, 26-32. https://doi.org/10.1016/j.toxlet.2010.04.023

Horiguchi, H. (2012). Current status of cadmium exposure among Japanese, especially regarding the safety standard for cadmium concentration in rice and adverse effects on proximal renal tubular function observed in farmers exposed to cadmium through consumption of self-grown rice. Japanese Journal of Hygiene, 67, 447-454. https://doi.org/10.1265/jjh.67.447

Hu, J., Wu F., Wu S., Lam C.L., LinX, & Wong, M.H. (2013). Biochar and Glomus caledonium influence Cd accumulation of upland kangkong (Ipomoea aquatic Forsk.) intercropped with Alfred Stonecrop (Sedum alfredii Hance). Scientific Reports, 4, 4671-4671. https://doi.org/10.1038/srep04671

Jiang, Q. Y., Zhuo F., Long S.H., Zhao H.D.,Yang D.J., Ye Z.H., Li S.S., & Jing, Y.X. (2018). Can arbuscular my corrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Scientific Reports, 6, 21805. https://doi.org/10.1038/srep21805

Johnson, J.S., & Kilburn, K.H. (1983). Cadmium induced metal fume fever: results of inhalation challenge. American Journal of Industrial Medicine, 4(4), 533-40. https://doi.org/10.1002/ajim.4700040407

Kim, Y.S., Kim, Y.J., and Seo, Y.R. (2015). An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. Journal of Cancer Prevention, 20(4), 232-240. https://doi.org/10.15430/JCP.2015.20.4.232

Lasat, M.M. (2000). Phyto extraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2(25),1-25. https://doi.org/10.4148/1090-7025.1015

Liu, J., Dong, Y., Xu, H., Wang, D., & Xu, J. (2007). Accumulation of Cd,PbandZnby 19 wetland plant species in constructed wetland. Journal of Hazardous Materials, 147(3), 947-953. https://doi.org/10.1016/ j.jhazmat.2007.01.125

Mahmud, R., Naoto, I., Kasajima, S., & Shaheen, R. (2008). Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh. International Journal of Phytoremediation,10(2),119-132. https://doi.org/10.1080/15226510801913884

Mahbubeh, M., & Bahare, B. (2012). High biomass Chenopodium album L. is a suitable weed for remediation Cd-contaminated soils. Journal of American Science, 8(1), 83-87. http://www.jofamericanscience.org/journals /am-sci/am0801/013 7700am0801 83 87.pdf

Murtaza, G., Ghafoor, A., Zia-Ur-Rehman, M., Sabir, M. & Naeem, A.. (2012). Phytodiversity for metals in plants grown in urban agricultural lands irrigated with untreated city effluent. Communications in Soil Science and Plant Analysis, 43,1181-1201.

Nassouhi, D., Ergonul, M., & Atasa˘gun, S. (2018). The phytoremediation potential of water lettuce Pistia stratiotes exposed to cadmium and lead. FABA 2018: 13th International Symposium on Fisheries and Aquatic Sciences. https://www.researchgate.net/publication/ 329184874 The phytoremediation potenti al of water lettuce Pistia stratiotes expose d to Cadmium and Lead

Sanghamitra, K., Prasada Rao, P.V.V., & Naidu, G.R.K. (2011). Heavy metal tolerance of weed species and their accumulations by phytoextraction. Indian Journal of Science and Technology, 4(3), 285-290. http://www.indjst.org/index.php/indjst/ article/view/29984/25939

Sawabe, A., Takeda, R., & Komemushi, S. (2006). Phytoremediation: Searching for plantswithhighenvironmentalpurification capacity.Memoirs of the Faculty of AgricultureofKinkiUniversity,39,1-8.

Sriprachote, A., Kanyawongha, P., Ochiai, K., & Matoh, T. (2012). Current situation of cadmium-polluted paddy soil, rice and soybean in the Mae Sot District, Tak Province, Thailand. Soil Science and Plant Nutrition, 58(3), 349-359. https://doi.org/10.1080/00380768. 2012.686435

Subhashini, V., & Swamy, A.V.V.S. (2015). Phytoremediation of lead, cadmium and chromium contaminated soils using selected weed plants. Acta Biologica Indica 4(2), 205-212. https://pdfs.semanticscholar.org/ 8720/ b428b596e53835c66c2b1da59b87a7eab8 61.pdf

Wang, K.S., Huang, L.C., Lee, H.S., Chen, P.Y., & Chang, S.H. (2008). Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: Effects of cadmium speciation. Chemosphere, 72, 666-72. https://doi.org/10.1016/j. chemosphere.2008.03.034

Williams, P.N., Lei, M., Sun, G., Huang, Q., Lu, Y., Deacon, C., Meharg, A.A., & Zhu, Y.G. (2009). Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science and Technology, 43, 637-642. https://doi.org/10.1021/es802412r

World Health Organization (2007). Health risk of heavy metals from long-range transboundary air pollution. World Health Organization, Europe. http://www.euro.who.int/ data/ assets/pdf file/0007/78649/E91044.pdf

Yuan, M. , He H., Xiao L., Zhong T., Liu H., Li S., Deng P., Ye Z., & Jing, Y. (2014). Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnellasp. JN27. Chemosphere, 103, 99-104. https://doi.org/10.1016/j. chemosphere.2013.11.040

Zulfiqar, S. Wahid, A., Farooq M., Maqbool, N., & Arfan, M. (2012). Phytoremediation of soil cadmium using Chenopodium species. Pakistan Journal of Agricultural Sciences, 49(4), 435-445. https://www.researchgate.net/publication/ 285931395